Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Risk Anal ; 2022 May 01.
Article in English | MEDLINE | ID: covidwho-2303241

ABSTRACT

The COVID 19 pandemic has triggered concerns and assumptions globally about transmission of the SARS-CoV-2 virus via cash transactions. This paper assesses the risk of contracting COVID-19 through exposure to SARS-CoV-2 via cash acting as a fomite in payment transactions. A quantitative microbial risk assessment was conducted for a scenario assuming an infectious person at the onset of symptoms, when virion concentrations in coughed droplets are at their highest. This person then contaminates a banknote by coughing on it and immediately hands it over to another person, who might then be infected by transferring the virions with a finger from the contaminated banknote to a facial mucous membrane. The scenario considered transfer efficiency of virions on the banknote to fingertips when droplets were still wet and after having dried up and subsequently being touched by finger printing or rubbing the object. Accounting for the likelihood of the scenario to occur by considering (1) a local prevalence of 100 COVID-19 cases/100,000 persons, (2) a maximum of about one-fifth of infected persons transmit high virus loads, and (3) the numbers of cash transactions/person/day, the risk of contracting COVID-19 via person-to-person cash transactions was estimated to be much lower than once per 39,000 days (107 years) for a single person. In the general populace, there will be a maximum of 2.6 expected cases/100,000 persons/day. The risk for a cashier at an average point of sale was estimated to be much less than once per 430 working days (21 months). The depicted scenario is a rare event, therefore, for a single person, the risk of contracting COVID-19 via person-to-person cash transactions is very low. At a point of sale, the risk to the cashier proportionally increases but it is still low.

2.
Emerg Infect Dis ; 29(1)2022 Nov 17.
Article in English | MEDLINE | ID: covidwho-2215190

ABSTRACT

Increasing nonzoonotic human monkeypox virus (MPXV) infections urge reevaluation of inactivation strategies. We demonstrate efficient inactivation of MPXV by 2 World Health Organization‒recommended alcohol-based hand rub solutions. When compared with other (re)emerging enveloped viruses, MPXV displayed the greatest stability. Our results support rigorous adherence to use of alcohol-based disinfectants.

3.
Front Immunol ; 13: 1062210, 2022.
Article in English | MEDLINE | ID: covidwho-2198905

ABSTRACT

With the emergence of novel Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) Variants of Concern (VOCs), vaccination studies that elucidate the efficiency and effectiveness of a vaccination campaign are critical to assess the durability and the protective immunity provided by vaccines. SARS-CoV-2 vaccines have been found to induce robust humoral and cell-mediated immunity in individuals vaccinated with homologous vaccination regimens. Recent studies also suggest improved immune response against SARS-CoV-2 when heterologous vaccination strategies are employed. Yet, few data exist on the extent to which heterologous prime-boost-boost vaccinations with two different vaccine platforms have an impact on the T cell-mediated immune responses with a special emphasis on the currently dominantly circulating Omicron strain. In this study, we collected serum and peripheral blood mononuclear cells (PBMCs) from 57 study participants of median 35-year old's working in the health care field, who have received different vaccination regimens. Neutralization assays revealed robust but decreased neutralization of Omicron VOC, including BA.1 and BA.4/5, compared to WT SARS-CoV-2 in all vaccine groups and increased WT SARS-CoV-2 binding and neutralizing antibodies titers in homologous mRNA prime-boost-boost study participants. By investigating cytokine production, we found that homologous and heterologous prime-boost-boost-vaccination induces a robust cytokine response of CD4+ and CD8+ T cells. Collectively, our results indicate robust humoral and T cell mediated immunity against Omicron in homologous and heterologous prime-boost-boost vaccinated study participants, which might serve as a guide for policy decisions.


Subject(s)
COVID-19 , Vaccines , Humans , Adult , COVID-19 Vaccines , CD8-Positive T-Lymphocytes , Antibody Formation , Leukocytes, Mononuclear , SARS-CoV-2 , COVID-19/prevention & control , Cytokines
4.
Cell Rep ; 40(7): 111214, 2022 08 16.
Article in English | MEDLINE | ID: covidwho-1966424

ABSTRACT

Vaccine-associated enhanced respiratory disease (VAERD) is a severe complication for some respiratory infections. To investigate the potential for VAERD induction in coronavirus disease 2019 (COVID-19), we evaluate two vaccine leads utilizing a severe hamster infection model: a T helper type 1 (TH1)-biased measles vaccine-derived candidate and a TH2-biased alum-adjuvanted, non-stabilized spike protein. The measles virus (MeV)-derived vaccine protects the animals, but the protein lead induces VAERD, which can be alleviated by dexamethasone treatment. Bulk transcriptomic analysis reveals that our protein vaccine prepares enhanced host gene dysregulation in the lung, exclusively up-regulating mRNAs encoding the eosinophil attractant CCL-11, TH2-driving interleukin (IL)-19, or TH2 cytokines IL-4, IL-5, and IL-13. Single-cell RNA sequencing (scRNA-seq) identifies lung macrophages or lymphoid cells as sources, respectively. Our findings imply that VAERD is caused by the concerted action of hyperstimulated macrophages and TH2 cytokine-secreting lymphoid cells and potentially links VAERD to antibody-dependent enhancement (ADE). In summary, we identify the cytokine drivers and cellular contributors that mediate VAERD after TH2-biased vaccination.


Subject(s)
COVID-19 , Vaccines , Animals , Antibodies, Viral , Cricetinae , Cytokines/metabolism , Immunization , Lung/pathology , Mice , Mice, Inbred BALB C , Th1 Cells , Th2 Cells , Vaccination
5.
J Infect Dis ; 226(9): 1608-1615, 2022 11 01.
Article in English | MEDLINE | ID: covidwho-1886449

ABSTRACT

BACKGROUND: The contribution of droplet-contaminated surfaces for virus transmission has been discussed controversially in the context of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic. More importantly, the risk of fomite-based transmission has not been systematically addressed. Therefore, the aim of this study was to evaluate whether confirmed hospitalized coronavirus disease 2019 (COVID-19) patients can contaminate stainless steel carriers by coughing or intensive moistening with saliva and to assess the risk of SARS-CoV-2 transmission upon detection of viral loads and infectious virus in cell culture. METHODS: We initiated a single-center observational study including 15 COVID-19 patients with a high baseline viral load (cycle threshold value ≤25). We documented clinical and laboratory parameters and used patient samples to perform virus culture, quantitative polymerase chain reaction, and virus sequencing. RESULTS: Nasopharyngeal and oropharyngeal swabs of all patients were positive for viral ribonucleic acid on the day of the study. Infectious SARS-CoV-2 could be isolated from 6 patient swabs (46.2%). After coughing, no infectious virus could be recovered, however, intensive moistening with saliva resulted in successful viral recovery from steel carriers of 5 patients (38.5%). CONCLUSIONS: Transmission of infectious SARS-CoV-2 via fomites is possible upon extensive moistening, but it is unlikely to occur in real-life scenarios and from droplet-contaminated fomites.


Subject(s)
COVID-19 , Communicable Diseases , Humans , SARS-CoV-2 , Fomites , Pandemics , Viral Load
6.
Virus Res ; 316: 198791, 2022 07 15.
Article in English | MEDLINE | ID: covidwho-1815257

ABSTRACT

The emergence of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) represents an unprecedented threat for the human population, necessitating rapid and effective intervention measures. Given the main infection route by airborne transmission, significant attention has been bestowed upon the use of antiseptic mouthrinses as a way to possibly reduce infectious viral titers. However, clinical evaluations are still sparse. Thus, we evaluated a wide variety of antiseptic agents that can be used as mouthrinses for their antiviral effects in vitro and their respective mode of action. One of the most promising antiseptic agents (benzalkoniumchloride, BAC) was used in a randomized placebo-controlled clinical trial with subsequent analysis of viral loads by RT-qPCR and virus rescue in cell culture. Mechanistic analysis revealed that treatment with BAC and other antiseptic agents efficiently inactivated SARS-CoV-2 in vitro by primarily disrupting the viral envelope, without affecting viral RNA integrity. However, the clinical application only resulted in a mild reduction of viral loads in the oral cavity. These results indicate that gargling with mouthrinses comprising single antiseptic agents may play a minor role towards a potential reduction of transmission rates and thus, these findings are of utmost importance when considering alternative COVID-19 prevention strategies.


Subject(s)
Anti-Infective Agents, Local , COVID-19 Drug Treatment , Anti-Infective Agents, Local/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , SARS-CoV-2 , Viral Load
7.
STAR Protoc ; 3(2): 101188, 2022 06 17.
Article in English | MEDLINE | ID: covidwho-1747493

ABSTRACT

Transmission via fomites poses a major dissemination route for many human pathogens, particularly because of transfer via fingertips. Here, we present a protocol to investigate direct transfer of infectious agents from fomites to humans via naked fingertips. The protocol is suitable for pathogens requiring highest biosafety levels (e.g., SARS-CoV-2). We used an artificial skin to touch a defined volume of virus suspension and subsequent quantification of infectious entities allows quantitative measurement of transfer efficiency and risk assessment. For complete information on the generation and use of this manuscript, please refer to Todt et al. (2021).


Subject(s)
COVID-19 , Viruses , Fomites , Humans , SARS-CoV-2 , Touch
8.
Vaccines (Basel) ; 10(3)2022 Mar 11.
Article in English | MEDLINE | ID: covidwho-1742752

ABSTRACT

In early 2022, the Coronavirus disease 2019 (COVID-19) remains a global challenge. COVID-19 is caused by an increasing number of variants of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Here, we report an outbreak of SARS-CoV-2 breakthrough infections related to a student festive event with 100 mostly vaccinated guests, which took place in Northern Bavaria, Germany, in October 2021. The data were obtained by retrospective guest interviews. In total, 95 students participated in the study, with 94 being fully vaccinated and 24 reporting infection by the delta variant. Correlation analyses among 15 examined variables revealed that time spent at the event, conversation with the supposed index person, and a homologous viral vector vaccination regime were significant risk factors for infection. Non-significant observations related to higher rates of infection included time since last vaccination, shared use of drinking vessels, and number of individual person-to-person contacts at the event. Our data suggest that a high rate of breakthrough infections with the delta variant occurs if no preventive measures are practiced. To limit infection risk, high-quality testing of participants should be considered a mandatory measure at gatherings, irrespective of the participants' vaccination status.

9.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: covidwho-1671749

ABSTRACT

Type I interferons (IFN-I) exert pleiotropic biological effects during viral infections, balancing virus control versus immune-mediated pathologies, and have been successfully employed for the treatment of viral diseases. Humans express 12 IFN-alpha (α) subtypes, which activate downstream signaling cascades and result in distinct patterns of immune responses and differential antiviral responses. Inborn errors in IFN-I immunity and the presence of anti-IFN autoantibodies account for very severe courses of COVID-19; therefore, early administration of IFN-I may be protective against life-threatening disease. Here we comprehensively analyzed the antiviral activity of all IFNα subtypes against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to identify the underlying immune signatures and explore their therapeutic potential. Prophylaxis of primary human airway epithelial cells (hAEC) with different IFNα subtypes during SARS-CoV-2 infection uncovered distinct functional classes with high, intermediate, and low antiviral IFNs. In particular, IFNα5 showed superior antiviral activity against SARS-CoV-2 infection in vitro and in SARS-CoV-2-infected mice in vivo. Dose dependency studies further displayed additive effects upon coadministration with the broad antiviral drug remdesivir in cell culture. Transcriptomic analysis of IFN-treated hAEC revealed different transcriptional signatures, uncovering distinct, intersecting, and prototypical genes of individual IFNα subtypes. Global proteomic analyses systematically assessed the abundance of specific antiviral key effector molecules which are involved in IFN-I signaling pathways, negative regulation of viral processes, and immune effector processes for the potent antiviral IFNα5. Taken together, our data provide a systemic, multimodular definition of antiviral host responses mediated by defined IFN-I. This knowledge will support the development of novel therapeutic approaches against SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Interferon-alpha/pharmacology , SARS-CoV-2/drug effects , Transcriptome , Virus Replication/drug effects , Animals , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Cloning, Molecular , Disease Models, Animal , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Profiling , Gene Expression Regulation , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Interferon-alpha/genetics , Interferon-alpha/immunology , Mice , Protein Isoforms/classification , Protein Isoforms/genetics , Protein Isoforms/immunology , Protein Isoforms/pharmacology , Recombinant Proteins/classification , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/pharmacology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Signal Transduction , Vero Cells
10.
PLoS Biol ; 19(12): e3001490, 2021 12.
Article in English | MEDLINE | ID: covidwho-1595018

ABSTRACT

Over the past 20 years, 3 highly pathogenic human coronaviruses (HCoVs) have emerged-Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and, most recently, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-demonstrating that coronaviruses (CoVs) pose a serious threat to human health and highlighting the importance of developing effective therapies against them. Similar to other viruses, CoVs are dependent on host factors for their survival and replication. We hypothesized that evolutionarily distinct CoVs may exploit similar host factors and pathways to support their replication cycles. Herein, we conducted 2 independent genome-wide CRISPR/Cas-9 knockout (KO) screens to identify MERS-CoV and HCoV-229E host dependency factors (HDFs) required for HCoV replication in the human Huh7 cell line. Top scoring genes were further validated and assessed in the context of MERS-CoV and HCoV-229E infection as well as SARS-CoV and SARS-CoV-2 infection. Strikingly, we found that several autophagy-related genes, including TMEM41B, MINAR1, and the immunophilin FKBP8, were common host factors required for pan-CoV replication. Importantly, inhibition of the immunophilin protein family with the compounds cyclosporine A, and the nonimmunosuppressive derivative alisporivir, resulted in dose-dependent inhibition of CoV replication in primary human nasal epithelial cell cultures, which recapitulate the natural site of virus replication. Overall, we identified host factors that are crucial for CoV replication and demonstrated that these factors constitute potential targets for therapeutic intervention by clinically approved drugs.


Subject(s)
Autophagy/genetics , CRISPR-Cas Systems , Middle East Respiratory Syndrome Coronavirus/genetics , SARS-CoV-2/genetics , Antiviral Agents/pharmacology , Gene Knockdown Techniques , Host-Pathogen Interactions , Humans , Middle East Respiratory Syndrome Coronavirus/drug effects , Middle East Respiratory Syndrome Coronavirus/physiology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus Replication
11.
J Infect Dis ; 223(6): 1114-1115, 2021 03 29.
Article in English | MEDLINE | ID: covidwho-1467334
12.
COVID ; 1(1):345-356, 2021.
Article in English | MDPI | ID: covidwho-1390555

ABSTRACT

The role of educational facilities, including schools and universities, in the SARS-CoV-2 pandemic is heavily debated. Specifically, the risk of infection in student dormitories has not been studied. This cohort study monitored students living in dormitories in Bochum, Germany, throughout the winter term of 2020/2021. Over the course of four months, participants were tested repeatedly for SARS-CoV-2 infections using RT-PCR from gargle samples and serological testing. An online questionnaire identified individual risk factors. A total of 810 (46.5% female) students participated. Of these, 590 (72.8%) students participated in the final visit. The cross-sectional antibody prevalence was n = 23 (2.8%) in November 2020 and n = 29 (4.9%) in February 2021. Of 2513 gargle samples analyzed, 19 (0.8%) tested positive for SARS-CoV-2, corresponding to 14 (2.4%) infections detected within the study period. Gargle samples available of cases with confirmed present infection were always positive. The person-time incidence rate was 112.7 (95% CI: 54.11–207.2) per 100,000 person weeks. The standardized incidence ratio was 0.9 (95% CI 0.51–1.46, p = 0.69). In conclusion, students living in student dormitories do not appear to be major drivers of SARS-CoV-2 infections. RT-PCR from gargle samples is a patient-friendly and scalable surveillance tool for detection of SARS-CoV-2 infections.

13.
iScience ; 24(8): 102908, 2021 Aug 20.
Article in English | MEDLINE | ID: covidwho-1330909

ABSTRACT

The current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has created a significant threat to global health. While respiratory aerosols or droplets are considered as the main route of human-to-human transmission, secretions expelled by infected individuals can also contaminate surfaces and objects, potentially creating the risk of fomite-based transmission. Consequently, frequently touched objects such as paper currency and coins have been suspected as potential transmission vehicle. To assess the risk of SARS-CoV-2 transmission by banknotes and coins, we examined the stability of SARS-CoV-2 and bovine coronavirus, as surrogate with lower biosafety restrictions, on these different means of payment and developed a touch transfer method to examine transfer efficiency from contaminated surfaces to fingertips. Although we observed prolonged virus stability, our results indicate that transmission of SARS-CoV-2 via contaminated coins and banknotes is unlikely and requires high viral loads and a timely order of specific events.

14.
Viruses ; 13(7)2021 07 20.
Article in English | MEDLINE | ID: covidwho-1325786

ABSTRACT

Treatment options for COVID-19, a disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, are currently severely limited. Therefore, antiviral drugs that efficiently reduce SARS-CoV-2 replication or alleviate COVID-19 symptoms are urgently needed. Inhaled glucocorticoids are currently being discussed in the context of treatment for COVID-19, partly based on a previous study that reported reduced recovery times in cases of mild COVID-19 after inhalative administration of the glucocorticoid budesonide. Given various reports that describe the potential antiviral activity of glucocorticoids against respiratory viruses, we aimed to analyze a potential antiviral activity of budesonide against SARS-CoV-2 and circulating variants of concern (VOC) B.1.1.7 (alpha) and B.1.351 (beta). We demonstrate a dose-dependent inhibition of SARS-CoV-2 that was comparable between all viral variants tested while cell viability remains unaffected. Our results are encouraging as they could indicate a multimodal mode of action of budesonide against SARS-CoV-2 and COVID-19, which could contribute to an improved clinical performance.


Subject(s)
Antiviral Agents/pharmacology , Budesonide/pharmacology , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Adrenal Cortex Hormones/pharmacology , Animals , Antiviral Agents/administration & dosage , Budesonide/administration & dosage , COVID-19/virology , Chlorocebus aethiops , Glucocorticoids/pharmacology , Humans , Vero Cells , Virus Replication/drug effects
16.
Clin Microbiol Infect ; 27(9): 1353.e1-1353.e5, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1240261

ABSTRACT

OBJECTIVES: Detection and surveillance of SARS-CoV-2 is of eminent importance, particularly due to the rapid emergence of variants of concern (VOCs). In this study we evaluated if a commercially available quantitative real-time PCR (qRT-PCR) assay can identify SARS-CoV-2 B.1.1.7 lineage samples by a specific N gene dropout or Ct value shift compared with the S or RdRp gene. METHODS: VOC B.1.1.7 and non-B.1.1.7 SARS-CoV-2-positive patient samples were identified via whole-genome sequencing and variant-specific PCR. Confirmed B.1.1.7 (n = 48) and non-B.1.1.7 samples (n = 58) were analysed using the Allplex™ SARS-CoV-2/FluA/FluB/RSV™ PCR assay for presence of SARS-CoV-2 S, RdRp and N genes. The N gene coding sequence of SARS-CoV-2 with and without the D3L mutation (specific for B.1.1.7) was cloned into pCR™II-TOPO™ vectors to validate polymorphism-dependent N gene dropout with the Allplex™ SARS-CoV-2/FluA/FluB/RSV™ PCR assay. RESULTS: All studied B.1.1.7-positive patient samples showed significantly higher Ct values in qRT-PCR (Δ6-10, N gene dropout on Ct values > 29) of N gene than the corresponding values of S (p ≤ 0.0001) and RdRp (p ≤ 0.0001) genes. The assay reliably discriminated B.1.1.7 and non-B.1.1.7 positive samples (area under the curve = 1) in a receiver operating characteristic curve analysis. Identical Ct value shifts (Δ7-10) were detected in reverse genetic experiments, using isolated plasmids containing N gene coding sequences corresponding to D3 or 3L variants. DISCUSSION: An N gene dropout or Ct value shift is shown for B.1.1.7-positive samples in the Allplex™ SARS-CoV-2/FluA/FluB/RSV™ PCR assay. This approach can be used as a rapid tool for B.1.1.7 detection in single assay high throughput diagnostics.


Subject(s)
COVID-19/diagnosis , Coronavirus Nucleocapsid Proteins/genetics , SARS-CoV-2/classification , Whole Genome Sequencing/methods , COVID-19 Nucleic Acid Testing , Genome, Viral , High-Throughput Nucleotide Sequencing , Humans , Multiplex Polymerase Chain Reaction , Mutation , ROC Curve , SARS-CoV-2/genetics , Sensitivity and Specificity
17.
J Infect Dis ; 224(3): 420-424, 2021 08 02.
Article in English | MEDLINE | ID: covidwho-1228502

ABSTRACT

The emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern with increased transmission dynamics has raised questions regarding stability and disinfection of these viruses. We analyzed surface stability and disinfection of the currently circulating SARS-CoV-2 variants B.1.1.7 and B.1.351 compared to wild type. Treatment with heat, soap, and ethanol revealed similar inactivation profiles indicative of a comparable susceptibility towards disinfection. Furthermore, we observed comparable surface stability on steel, silver, copper, and face masks. Overall, our data support the application of currently recommended hygiene measures to minimize the risk of B.1.1.7 and B.1.351 transmission.


Subject(s)
Disinfection , SARS-CoV-2/physiology , COVID-19/virology , Disinfectants/pharmacology , Hot Temperature , Humans , SARS-CoV-2/drug effects , Soaps/pharmacology
18.
Viruses ; 13(4)2021 04 02.
Article in English | MEDLINE | ID: covidwho-1167761

ABSTRACT

The outbreak of SARS-CoV-2 developed into a global pandemic affecting millions of people worldwide. Despite one year of intensive research, the current treatment options for SARS-CoV-2 infected people are still limited. Clearly, novel antiviral compounds for the treatment of SARS-CoV-2 infected patients are still urgently needed. Complementary medicine is used along with standard medical treatment and accessible to a vast majority of people worldwide. Natural products with antiviral activity may contribute to improve the overall condition of SARS-CoV-2 infected individuals. In the present study, we investigated the antiviral activity of glycyrrhizin, the primary active ingredient of the licorice root, against SARS-CoV-2. We demonstrated that glycyrrhizin potently inhibits SARS-CoV-2 replication in vitro. Furthermore, we uncovered the underlying mechanism and showed that glycyrrhizin blocks the viral replication by inhibiting the viral main protease Mpro that is essential for viral replication. Our data indicate that the consumption of glycyrrhizin-containing products such as licorice root tea of black licorice may be of great benefit for SARS-CoV-2 infected people. Furthermore, glycyrrhizin is a good candidate for further investigation for clinical use to treat COVID-19 patients.


Subject(s)
Antiviral Agents/pharmacology , Glycyrrhizic Acid/pharmacology , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Virus Replication/drug effects , Animals , COVID-19 , Cell Survival/drug effects , Chlorocebus aethiops , Coronavirus 3C Proteases/drug effects , Glycyrrhiza/chemistry , Humans , Peptide Hydrolases/drug effects , Plant Extracts/pharmacology , Plant Roots/chemistry , Vero Cells
20.
J Infect Dis ; 222(8): 1289-1292, 2020 09 14.
Article in English | MEDLINE | ID: covidwho-772684

ABSTRACT

The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic creates a significant threat to global health. Recent studies suggested the significance of throat and salivary glands as major sites of virus replication and transmission during early coronavirus disease 2019, thus advocating application of oral antiseptics. However, the antiviral efficacy of oral rinsing solutions against SARS-CoV-2 has not been examined. Here, we evaluated the virucidal activity of different available oral rinses against SARS-CoV-2 under conditions mimicking nasopharyngeal secretions. Several formulations with significant SARS-CoV-2 inactivating properties in vitro support the idea that oral rinsing might reduce the viral load of saliva and could thus lower the transmission of SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Mouthwashes/pharmacology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Animals , Betacoronavirus/physiology , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/transmission , Humans , Pandemics , Pneumonia, Viral/transmission , SARS-CoV-2 , Saliva/virology , Vero Cells , Viral Load/drug effects , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL